SONY SenSWIR technology guide

SWIR Image Sensor Technology SenSWIR™

OVERVIEW

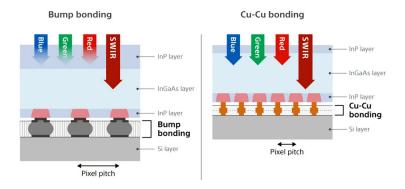
SenSWIR is a wide-band and high-sensitivity SWIR image sensor technology implemented by the combination of compound semiconductor InGaAs photodiodes and Silicon readout circuits through Cu-Cu bonding.

SWIR (Short Wavelength Infra-Red) light penetrates and is absorbed by different substances than visible light, so its attributes can be applied in a variety of different situations. As manufacturers in various industries continue to seek higher productivity, there is growing interest in sensing both in visible and invisible light range.

In IMX990 and IMX991, SenSWIR™ technology has enabled Sony to overcome challenges in pixel miniaturization to offer sensors that are compact, high-resolution, and capable of imaging from visible light to SWIR (Short Wavelength Infra-Red) light range. IMX990 and IMX991 are global shutter sensors with a digital output allowing for many features and functionality in industrial camera applications such as ROI and trigger mode.

The advances in performance and functionality introduced by the IMX990 and IMX991 pave the way for the development of SWIR industrial cameras and inspection equipment for a diverse range of applications such as inspection, identification, and measurement.

TECHNICAL FEATURES

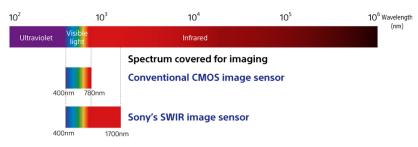

Higher pixel count, smaller systems

Creating SWIR sensors with smaller pixels than in current industrial CMOS image sensors has been challenging with conventional bump bonding, because a certain bump pitch must be maintained to bond the indium-gallium-arsenide (InGaAs) photodiode layer to the silicon readout circuit layer. With SenSWIR technology, Cu-Cu bonding enables a finer pixel pitch and smaller pixels. As a result, smaller high-resolution cameras can be developed, which can support higher inspection precision.

The CU-Cu bonding is a technique that provides electrical conduction by bonding copper pads, as the pixel chip (top) and logic chip (bottom) are stacked. Advantages over the previous through-silicon via approach (which electrically connects top and bottom chips at the edge of the pixel area) include smaller systems and improved performance, which affords greater freedom in design and promises higher productivity.

Broad imaging (0.4-1.7μm) from a single sensor that extends to the visible spectrum

The top indium-phosphorus (InP: Substrate that forms the base of the InGaAs layer) layer inevitably absorbs some visible light, but applying Sony's SWIR sensor technology makes this layer thinner, so that more light reaches the underlying InGaAs layer. The sensors have high quantum efficiency even in visible wavelengths. This enables broad imaging of wavelengths from 0.4 µm to 1.7 µm. A single camera equipped with the sensor can now cover both visible light and the SWIR spectrum, which previously required


separate cameras. This results in lower system costs. Image processing is also less intensive, which accelerates inspection. These advances promise to expand the scope of inspection significantly.

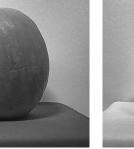
Enhanced capabilities from digital output

Unlike the analog output that most SWIR sensors are limited to, the SONY SenSWIR sensors achieved the same functionality as the current industrial CMOS image sensors by supporting digital output. Analog sensors require developers to implement an ADC or other functionality for industrial equipment on the camera. In contrast, the new sensors already include this functionality, which saves time and effort in camera development and makes it easier to develop versatile cameras.

What's SWIR?

Generally, light with a wavelength of 400 nm to 780 nm is referred to as visible light, and light with a wavelength of 780 nm to 106 nm as infrared light. The wavelength band of SWIR is from 900 nm to 2,500 nm, which is the region of infrared light closest to visible light. Image sensors equipped with SenSWIR technology are capable of broad imaging over the range of 400 nm - 1,700 nm, including visible light as well as SWIR light.

APPLICATIONS


Sorting fruits and vegetables

Water has the property of absorbing light at wavelengths around 1450 nm, so when utilizing that wavelength band with a SWIR sensor, areas containing water appear black. Since this sensor can detect water contained in materials, it is used in fruit and vegetable sorting and other applications.

Example of sorting fruits by detecting dents or scratches

SWIR imaging makes the moisture concentrating in dents on the apples visible.

Under visible light

Under SWIR (1,450 nm)

Applicable Sectors: Agriculture and Farming

Container content inspections

In the food manufacturing process, final inspection of container content is difficult for opaque food packages. In addition, there are cases where the sealing section may bite into the contents when sealing, which is also difficult to discern.

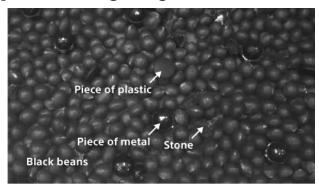
In some cases, even packages that appear opaque in the visible range are transparent at SWIR wavelengths, making it possible to observe the contents. By utilizing this technology, the contents can be confirmed nondestructively, and it is also possible to detect chewing.

Example of inspecting the filling status of a plastic container by transmitting light through it

Under visible light

Under SWIR (1,550 nm)

SWIR imaging makes it possible to check the content of opaque containers.

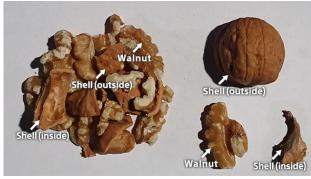

Applicable Sectors: Food/Medicine/Cosmetic Manufacturing


Foreign Material Inspection

In food manufacturing processes, performing final content inspections is difficult if the food packages are opaque. In some cases contents are pinched in the sealing part when the package is closed, which are also hard to detect.

Even if packages appear opaque in the visible range, it may be possible for light in SWIR wavelengths to penetrate them and allow their contents to be observed. By using this property, the inner areas of packages can be checked non-destructively and pinching errors can also be detected.

Example of detecting foreign matters in food



Under visible light

Under SWIR (1,300 nm)

SWIR imaging makes it easier to distinguish between a food product (black beans) and black-colored contaminants.

Example of detecting walnut shells by processing images taken at multiple SWIR wavelengths

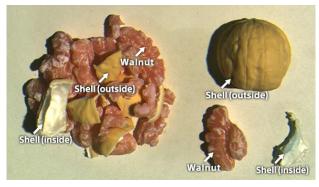


Image taken and processed with SWIR (1,050/1,200/1,450 nm)

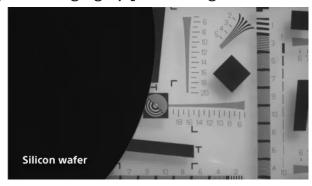
Walnut shells and nuts are difficult to distinguish with the naked eye, but SWIR imaging makes them easier to identify. The image on the right was taken with three SWIR wavelengths and pseudocolored. This kind of image processing makes it easier to distinguish walnut shells from nuts.

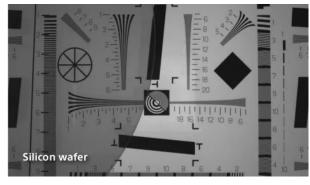
Applicable Sectors: Food/Medicine/Cosmetic Manufacturing

Sorting materials

Since there are many different types of plastics, each of which requires its own recycling, the first step in the recycling process is to sort them.

Plastics are transparent in the visible range, making it difficult to determine the characteristics of each material, but when viewed at SWIR wavelengths (especially multiple wavelengths), characteristics can be found and sorting can be performed.


Applicable Sectors: Recycling


Wafer Positioning in Semiconductor Manufacturing

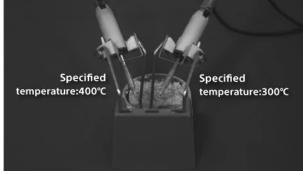
In recent years, the miniaturization of semiconductor devices has led to a demand for high precision in the silicon wafer lamination process. In order to improve accuracy, it is important to precisely match the alignment marks on the wafers.

Since light in the SWIR wavelength range penetrates the silicon layer of the wafer, the use of SWIR image sensors makes it possible to clearly see the marks. Sony's high-definition SWIR image sensor can be expected to improve edge detection accuracy.

Example of imaging by penetrating silicon wafers

Under visible light

Under SWIR (1,550 nm)


The photograph on the right was taken in an SWIR environment, so the resolution chart behind the silicon wafer is visible. This was taken using an IMX990 sensor at a high resolution of approximately 1.34 megapixels, so even small marks can be detected with high precision. In addition, using an IMX992 sensor, which has a resolution of approximately 5.32 megapixels, enables even higher-resolution inspection and measurement applications.

Applicable Sectors: Semiconductor Manufacturing

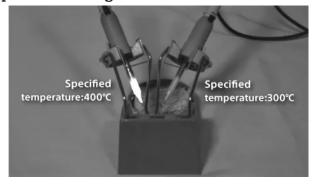

Temperature monitoring

Image sensors can capture differences in material temperature as differences in luminance. Among other things, objects above about 250°C emit light in the SWIR band, so SWIR image sensors can be used for monitoring high temperatures above 250°C. Applications in the steel industry and other industries are expected.

Example of monitoring the temperature at the tips of soldering irons

Under SWIR (1,550 nm)

In the SWIR image, it is possible to confirm not only that the tips of the soldering irons have become hot, but also to identify their differences in temperature.

Applicable Sectors: Heavy industry and plant manufacturing

Firefighting

Smoke can obstruct firefighters' vision during firefighting activities. SWIR image sensors, which are less susceptible to light scattering, are expected to be useful in checking the situation at the scene of a fire and in firefighting activities because they can capture images with less influence from smoke.

In addition, fire emits strong SWIR light, and by capturing this light with a SWIR image sensor, flames can be clearly projected. This can be useful in identifying the origin of a fire, such as a forest fire.

Remote Monitoring

In remote monitoring, airborne micro-particles can cause far-off targets to become blurred, making it difficult to accurately capture them with cameras. Comparatively, SWIR-band light, which has longer wavelengths than visible light, has the attribute of being affected to a lesser degree by airborne micro-particles than visible light, making it easier for far-off targets to be captured clearly. SWIR image sensors can therefore be utilized in applications for remote monitoring.

Applicable Sectors: Remote and Wide-area Monitoring

Observation of agricultural lands

Currently, efforts are underway in the agricultural industry to observe farmland with cameras from the sky. The ability to grasp the growth status of crops has made it possible to make limited fertilization and yield forecasts based on data.

However, it is not easy to judge the growth status based on color information alone; the SWIR image sensor allows visualization of the presence or absence of moisture, making it possible to visualize the growth status and distribution according to moisture content, thereby improving the accuracy of judgment.

Applicable Sectors: Agriculture and Farming

Sony's SenSWIR™ Sensors are available through **Macnica Americas**, **Inc**.

Macnica Americas, Inc. 380 Stevens Ave., Ste 206 Solana Beach, CA 92075 macnica.com/americas/mai/en

